Increasing Transconductance of Indium-Gallium-Arsenide Fin Field-Effect Transistors after Sequential Annealing

Gabriel E. Colón Reyes¹, Alon Vardi², Jesús del Álamo²

¹Department of Electrical and Computer Engineering, University of Puerto Rico, Mayagüez
²Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

Introduction

- Transistors are semiconductor devices capable of acting as electrical switches.
- FinFETs are a special kind of transistors that have a 3D structure which allows for better switching control.
- Transistors are usually evaluated on their current-voltage (I-V) characteristics.
- Conductance is the derivative of the drain current with respect to gate voltage.
- InGaAs is a III-V semiconductor material with better electrical properties than the traditional Si used for transistors.
- The devices were subjected to sequential annealing at 250⁰, 300⁰ and 350⁰C to test performance.

Objectives and Motivation

- Obtain a deeper understanding of FinFET performance.
- Obtain I-V characteristics of the devices.
- Study the device performance before and after sequential annealing and see how it changes.
- Design transistors capable of operating at lower voltage to reduce device power consumption and increase efficiency.

Methods

- The sample studied included 1600+ transistors across 16 dies, but for deeper study, the focus was on the fourth column, 400 devices.
- Each die included DC, MM, RF, LA and SF devices.
- Sequential annealing was only done for one die, 100 devices, of which only 37 were working devices.
- The devices under study were studied in a microscope probe station and measured using the B1500 semiconductor device analyzer.
- This setup is used to measure the I-V characteristics of the devices.
- Data gathered were analyzed to determine which devices were worthy of further study.

Key Findings

- The devices were annealed to improve their performance behavior under different conditions.
- There was no change in single-fin transistor transconductance with sequential annealing suggesting it improved the extrinsic part of the device with negligible effect on the MOS interface.
- In the future, we would like to study a wider array of devices to further understand their performance under different conditions.

Conclusions and Future Work

- When subjecting these devices to sequential annealing their transconductance significantly improved.
- There was no increase in single-fin transistor transconductance with sequential annealing suggesting it improved the extrinsic part of the device with negligible effect on the MOS interface.
- In the future, we would like to study a wider array of devices to further understand their performance under different conditions.

Acknowledgments

- MIT Office of Graduate Education
- Xtreme Transistors Group: Jesús del Álamo, Alon Vardi, Xiaowei Cai, Jesús Grajal, Wenjie Lu, Ethan Lee, Xin Zhao, Youngtack Lee, Tho Tran
- National Science Foundation Award ECCS-0939514

Table 1: S_{ox} Comparison

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>S_{ox} (μm²/V·s)</th>
<th>S_{min} (μm²/V·s)</th>
<th>S_{dec} (μm²/V·s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>79</td>
<td>114</td>
<td>151</td>
</tr>
<tr>
<td>250</td>
<td>83</td>
<td>114</td>
<td>151</td>
</tr>
<tr>
<td>300</td>
<td>83</td>
<td>114</td>
<td>151</td>
</tr>
<tr>
<td>350</td>
<td>83</td>
<td>114</td>
<td>151</td>
</tr>
</tbody>
</table>

Figure 1: MOSFET circuit symbol

Figure 2: Closed circuit symbol

Figure 3: Open circuit symbol

Figure 4: MOSFET Schematic

Figure 5: FinFET Schematic

Figure 6: Typical I-V characteristics for FETs with $W/L = 9$ nm

Figure 7: Sample under study

Figure 8: Microscope probe station

Figure 9: Under-the-microscope view of sample

Figure 10: Under-the-microscope view probing the sample

Figure 11: Annealing the sample

Figure 12: I-V Characteristics of Wide Fin Devices for Different Annealing Temperatures

Figure 13: g_m Characteristics of Wide Fin Devices for Different Annealing Temperature

Figure 14: I-V Characteristics of Narrow Fin Device

Figure 15: g_m Characteristics of Narrow Fin Devices for Different Annealing Temperatures

Figure 16: I-V Characteristics of Single Fin Device

Figure 17: g_m Characteristics of Single Fin Devices for Different Annealing Temperatures

Maximum g_m as a function of Sequential Annealing Temperature

Table 1: S_{ox} Comparison

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>S_{ox} (μm²/V·s)</th>
<th>S_{min} (μm²/V·s)</th>
<th>S_{dec} (μm²/V·s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>79</td>
<td>114</td>
<td>151</td>
</tr>
<tr>
<td>250</td>
<td>83</td>
<td>114</td>
<td>151</td>
</tr>
<tr>
<td>300</td>
<td>83</td>
<td>114</td>
<td>151</td>
</tr>
<tr>
<td>350</td>
<td>83</td>
<td>114</td>
<td>151</td>
</tr>
</tbody>
</table>